International TOR Rectifier

RADIATION HARDENED POWER MOSFET THRU-HOLE (TO-254AA)

JANSR2N7268 100V, N-CHANNEL REF: MIL-PRF-19500/603

RAD Hard[™] HEXFET[®] TECHNOLOGY

Product Summary

Part Number	Radiation Level	RDS(on)	ΙD	QPL Part Number
IRHM7150	100K Rads (Si)	0.065Ω	34A	JANSR2N7268
IRHM3150	300K Rads (Si)	0.065Ω	34A	JANSF2N7268
IRHM4150	500K Rads (Si)	0.065Ω	34A	JANSG2N7268
IRHM8150	1000K Rads (Si)	0.065Ω	34A	JANSH2N7268

International Rectifier's RADHard™ HEXFET® technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low Rdson and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.

Features:

- Single Event Effect (SEE) Hardened
- Low RDS(on)
- Low Total Gate Charge
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Ceramic Eyelets
- Light Weight

Absolute Maximum Ratings

Pre-Irradiation

	Parameter		Units
I _D @ V _{GS} = 12V, T _C = 25°C	Continuous Drain Current	34	
$I_D @ V_{GS} = 12V, T_C = 100^{\circ}C$	Continuous Drain Current	21	Α
I _{DM}	Pulsed Drain Current ①	136	
P _D @ T _C = 25°C	Max. Power Dissipation	150	W
	Linear Derating Factor	1.2	W/°C
V _{GS}	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy 2	500	mJ
I _{AR}	Avalanche Current ①	34	Α
EAR	Repetitive Avalanche Energy ①	15	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.5	V/ns
TJ	Operating Junction	-55 to 150	
T _{STG}	Storage Temperature Range		°C
	Lead Temperature	300 (0.063 in. (1.6mm) from case for 10s)	
	Weight	9.3 (Typical)	g

For footnotes refer to the last page

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	100	_	_	V	VGS =0 V, ID = 1.0mA
ΔBVDSS/ΔTJ	TJ Temperature Coefficient of Breakdown Voltage		0.13	_	V/°C	Reference to 25°C, I _D = 1.0mA
RDS(on)	Static Drain-to-Source		_	0.065	_	VGS = 12V, ID = 21A VGS = 12V, ID = 34A (4)
, ,	On-State Resistance		_	0.076	Ω	VGS = 12V, ID = 34A (4)
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = V_{GS}$, $I_{D} = 1.0 \text{mA}$
9fs	Forward Transconductance	8.0	_	_	S (७)	V _{DS} > 15V, I _{DS} = 21A ④
IDSS	Zero Gate Voltage Drain Current	_	_	25	^	VDS= 80V,VGS=0V
			_	250	μΑ	V _{DS} = 80V
						VGS = 0V, TJ = 125°C
IGSS	GSS Gate-to-Source Leakage Forward		_	100	~ ^	VGS = 20V
IGSS	Gate-to-Source Leakage Reverse	_	_	-100	nA	Vgs = -20V
Qg	Total Gate Charge	_	_	160		VGS = 12V, ID = 34A
Qgs	Gate-to-Source Charge	_	_	35	nC	VDS = 50V
Q _{gd}	Gate-to-Drain ('Miller') Charge	_	_	65		
^t d(on)	Turn-On Delay Time	_	_	45		$V_{DD} = 50V, I_{D} = 14A,$
tr	Rise Time	_	_	190		$V_{GS} = 12V, R_{G} = 2.35\Omega$
td(off)	Turn-Off Delay Time	_	_	170	ns	
tf	Fall Time	_	_	130		
LS + LD	Total Inductance	_	6.8	_	nΗ	Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package)
C _{iss}	Input Capacitance	_	4300	_		VGS = 0V, VDS = 25V
Coss	Output Capacitance	_	1200	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	200	_		

Source-Drain Diode Ratings and Characteristics

	Parameter			Тур	Max	Units	Test Conditions			
Is	Continuous Source Current (Body Diode)			_	34	۸				
ISM	Pulse Source Current (Body Diode) ①			_	136	Α				
VSD	Diode Forward Voltage			_	1.4	V	$T_j = 25^{\circ}C$, $I_S = 34A$, $V_{GS} = 0V$ ④			
trr	Reverse Recovery Time			_	570	ns	Tj = 25°C, IF = 34A, di/dt ≤ 100A/μs			
QRR	Reverse Recovery Charge			_	5.8	μC	V _{DD} ≤ 50V ④			
ton	Forward Turn-On Time Into	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.								

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
R _{th} JC	Junction-to-Case		_	0.83	0044	
RthCS	Case-to-sink		0.21	_	°C/W	
R _{th} JA	Junction-to-Ambient		_	48		Typical socket mount

Note: Corresponding Spice and Saber models are available on the International Rectifier Website. For footnotes refer to the last page

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation 56

	Parameter		ads(Si)1	300 - 1000K Rads (Si) ²		Units	Test Conditions
		Min	Min Max		Max		
BV _{DSS}	Drain-to-Source Breakdown Voltage	100	_	100	_	V	$V_{GS} = 0V, I_{D} = 1.0mA$
VGS(th)	Gate Threshold Voltage 4	2.0	4.0	1.25	4.5		$V_{GS} = V_{DS}$, $I_D = 1.0 \text{mA}$
I _{GSS}	Gate-to-Source Leakage Forward	_	100	_	100	nA	V _{GS} = 20V
IGSS	Gate-to-Source Leakage Reverse	_	-100	_	-100		V _{GS} = -20 V
I _{DSS}	Zero Gate Voltage Drain Current	_	25	_	50	μΑ	V _{DS} =80V, V _{GS} =0V
R _{DS(on)}	Static Drain-to-Source ④	_	0.065	_	0.09	Ω	Vgs = 12V, I _D =21A
	On-State Resistance (TO-3)						
R _{DS(on)}	Static Drain-to-Source 4	_	0.065	_	0.09	Ω	Vgs = 12V, I _D =21A
	On-State Resistance (TO-254AA)						
V _{SD}	Diode Forward Voltage ④	_	1.4	_	1.4	V	V _G S = 0V, I _S = 34A

^{1.} Part number IRHM7150 (JANSR2N7268)

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Table 2. Single Event Effect Safe Operating Area

lon	LET	Energy	Range	V _{DS} (v)						
	(MeV/(mg/cm ²))	(MeV)	(µm)	@VGS=0V	@Vgs=-5V	@VGS=-10V	@VGS=-15V	@VGS=-20V		
Cu	28	285	43	100	100	100	80	60		
Br	36.8	305	39	100	90	70	50	_		

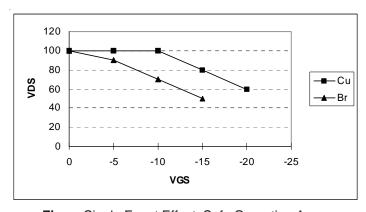
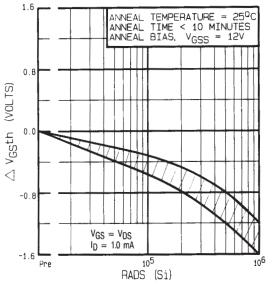



Fig a. Single Event Effect, Safe Operating Area

For footnotes refer to the last page

^{2.} Part numbers IRHM3150 (JANSF2N7268), IRHM4150 (JANSG2N7268) and IRHM8150 (JANSH2N7268)

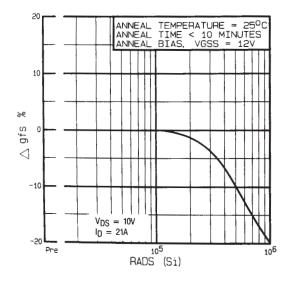
ANNEAL TEMPERATURE = 25°C ANNEAL TIME < 10 MINUTES ANNEAL BIAS, VGSS = 12V

-60

VGS = 12V

ID = 21A

-100

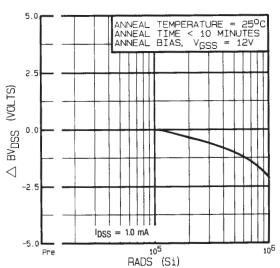
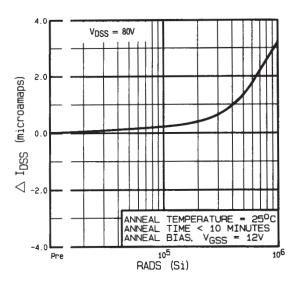
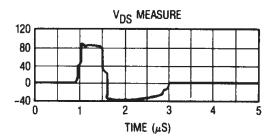

Pre

105

RADS (Si)

Fig 1. Typical Response of Gate Threshhold Voltage Vs. Total Dose Exposure

Fig 2. Typical Response of On-State Resistance Vs. Total Dose Exposure

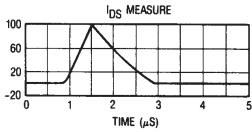

Fig 3. Typical Response of Transconductance Vs. Total Dose Exposure

Fig 4. Typical Response of Drain to Source Breakdown Vs. Total Dose Exposure

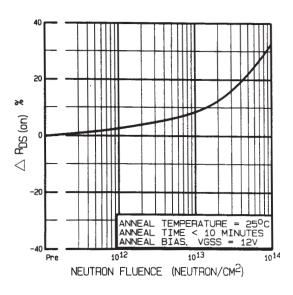


Fig 5. Typical Zero Gate Voltage Drain Current Vs. Total Dose Exposure

Fig 7. Typical Transient Response of Rad Hard HEXFET During 1x10¹² Rad (Si)/Sec Exposure

Fig 6. Typical On-State Resistance Vs. Neutron Fluence Level

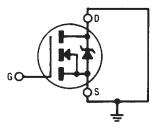
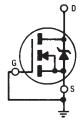
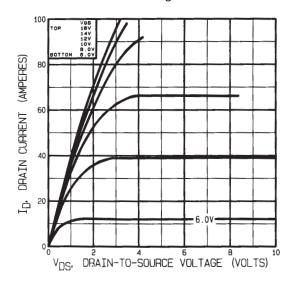
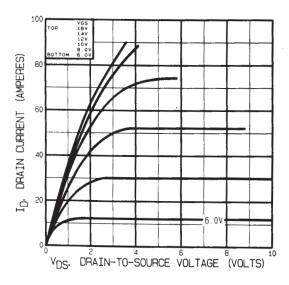




Fig 8a. Gate Stress of V_{GSS} Equals 12 Volts During Radiation


Fig 8b. V_{DSS} Stress Equals 80% of B_{VDSS} During Radiation

Note: Bias Conditions during radiation: Vgs = 12 Vdc, Vps = 0 Vdc

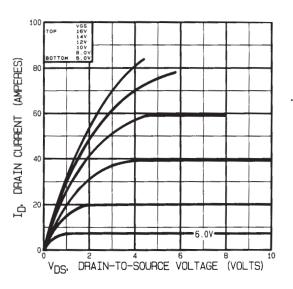


Fig 9. Typical Output Characteristics Pre-Irradiation

Fig 10. Typical Output Characteristics Post-Irradiation 100K Rads (Si)

Fig 12. Typical Output Characteristics Post-Irradiation 1 Mega Rads(Si)

Note: Bias Conditions during radiation: Vgs = 0 Vdc, Vps = 80 Vdc

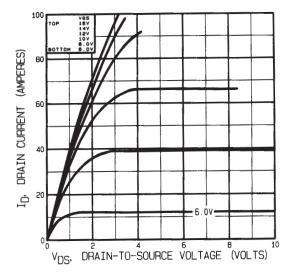


Fig 13. Typical Output Characteristics
Pre-Irradiation

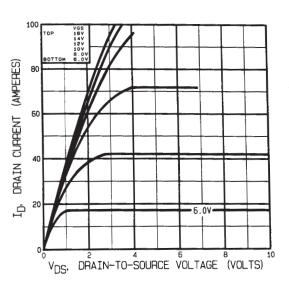


Fig 14. Typical Output Characteristics Post-Irradiation 100K Rads (Si)

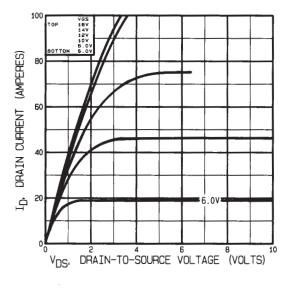


Fig 15. Typical Output Characteristics Post-Irradiation 300K Rads (Si)

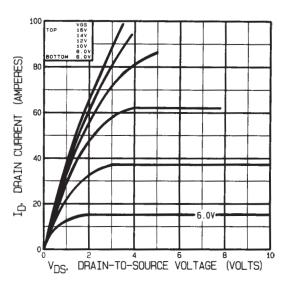
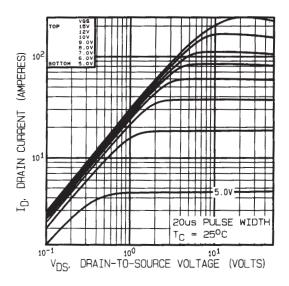



Fig 16. Typical Output Characteristics Post-Irradiation 1 Mega Rads(Si)

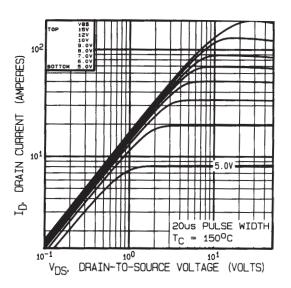
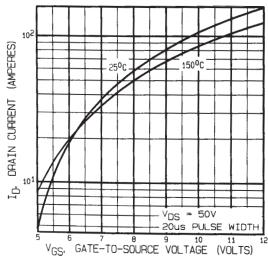
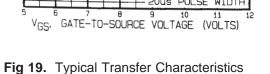
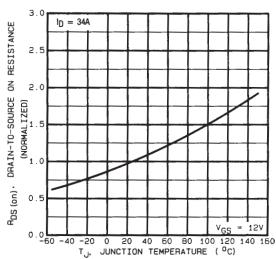
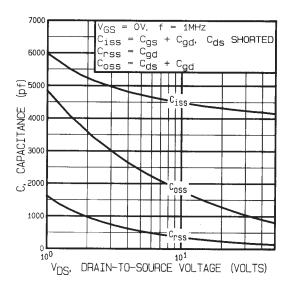
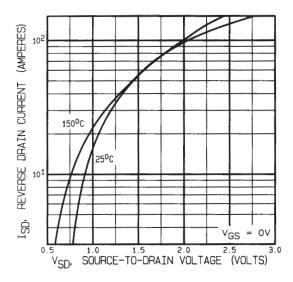





Fig 17. Typical Output Characteristics


Fig 18. Typical Output Characteristics


Fig 20. Normalized On-Resistance Vs. Temperature

20 I_D = 34A = BOV GATE-TO-SOURCE VOLTAGE (VOLTS) v_{DS} = 50V v_{DS} 16 ۷_DS = 20V 12 V_{GS} FOR TEST CIRCUIT SEE FIGURE 29 120 TOTAL GATE CHARGE (nc)

Fig 21. Typical CapacitanceVs. Drain-to-Source Voltage

Fig 22. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 23. Typical Source-Drain Diode Forward Voltage

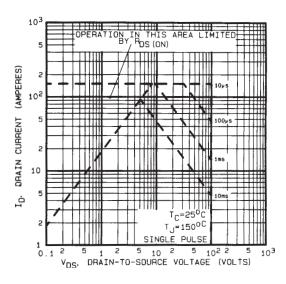


Fig 24. Maximum Safe Operating Area

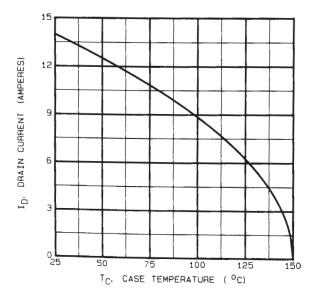


Fig 25. Maximum Drain Current Vs.
Case Temperature

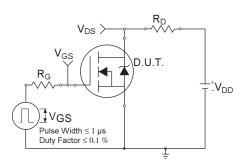


Fig 26a. Switching Time Test Circuit

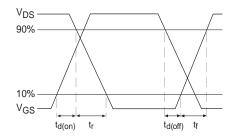


Fig 26b. Switching Time Waveforms

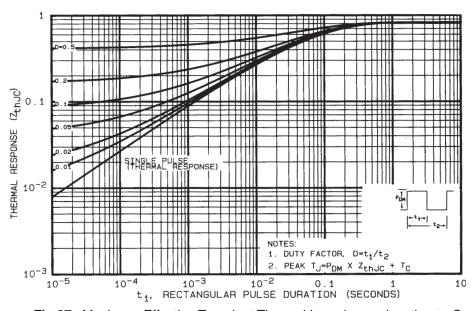


Fig 27. Maximum Effective Transient Thermal Impedance, Junction-to-Case

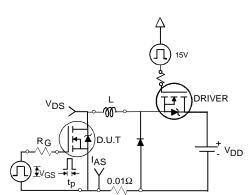
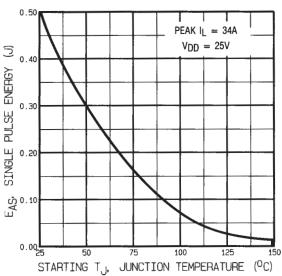



Fig 28a. Unclamped Inductive Test Circuit

Fig 28c. Maximum Avalanche Energy Vs. Drain Current

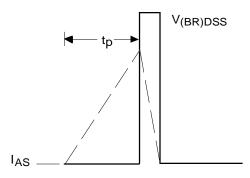
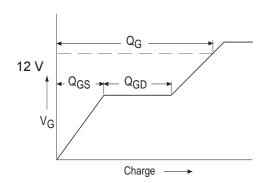



Fig 28b. Unclamped Inductive Waveforms

Fig 29a. Basic Gate Charge Waveform www.irf.com

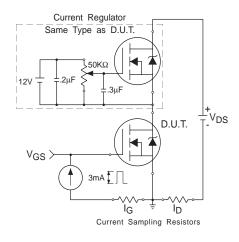
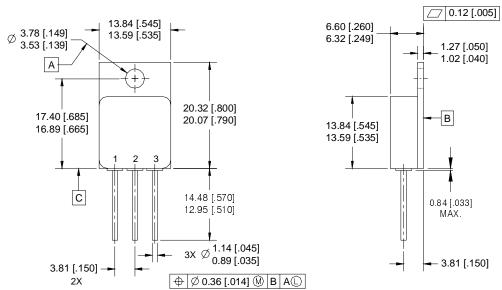


Fig 29b. Gate Charge Test Circuit

11

IRHM7150, JANSR2N7268


Pre-Irradiation

Foot Notes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- ② $V_{DD} = 25V$, starting $T_J = 25$ °C, L = 0.86mH Peak IL = 26A, VGS = 12V
- ③ $I_{SD} \le 26A$, $di/dt \le 190A/\mu s$, $V_{DD} \le 100V, T_{J} \le 150$ °C

- 4 Pulse width \leq 300 μ s; Duty Cycle \leq 2%
- 5 Total Dose Irradiation with VGS Bias. 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- 6 Total Dose Irradiation with VDS Bias. 80 volt Vps applied and Vgs = 0 during irradiation per MIL-STD-750, method 1019, condition A.

Case Outline and Dimensions — Low-Ohmic TO-254AA

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. CONTROLLING DIMENSION: INCH.
- 4. CONFORMS TO JEDEC OUTLINE TO-254AA.

PIN ASSIGNMENTS

1 = DRAIN

2 = SOURCE

3 = GATE

CAUTION **BERYLLIA WARNING PER MIL-PRF-19500**

Packages containing beryllia shall not be ground, sandblasted, machined or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER: 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 05/2006